

Data Sheet SHF PDV67 A

67 GHz Power Divider

Description

The SHF PDV67 A is a compact, high-performance resistive power divider with a bandwidth exceeding 67 GHz¹. Output ports (2 and 3) are amplitude and phase-matched.

Fully customizable 1.85 mm connector configurations as well as between series (1.0 mm \leftrightarrow 1.85 mm) configurations are available to meet individual requirements of the customer and to avoid additional adapters in the setup.

Dedicated mounting holes on the back side allow secure installation on a mounting plate for stable system integration.

The SHF PDV67 A can also be used as a power combiner, using port 2 and 3 as input ports.

Features

- Small and lightweight
- Low loss and low reflection
- Excellent phase and amplitude balance at output ports
- Bi-directional (can be used as divider or combiner)

Configurations

- VFVFVF: All ports 1.85 mm female
- · Other configurations on request

Product Code Example

SHF PDV67

VFVFVF

¹ Due to the intrinsic geometry of V connectors, energy could couple to high-order modes for frequencies above 67 GHz.

Specifications²

Parameter	Unit	Symbol	Min	Тур	Max	Conditions
Frequency range	f	GHz	DC		67	
					6.5	f < 15 GHz
Insertion loss	dB	IL			7	15 GHz < f < 40 GHz
					7.8	40 GHz < f < 67 GHz
Return loss			20			f < 6 GHz
	dB	RL	15			6 GHz < f < 40 GHz
			10			40 GHz < f < 67 GHz
Power handling	W	P _{in,max}			1	
Amplitude balance						Amplitude balance ³ between output ports.
	dB				±0.3	f < 15 GHz
					±0.4	15 GHz < f < 40 GHz
					±0.6	40 GHz < f < 67 GHz
Phase balance						Phase balance ⁴ between output ports.
	deg				±3	f < 15 GHz
					±5	15 GHz < f < 40 GHz
					±7	40 GHz < f < 67 GHz
Input impedance	Ω	R_L		50		
Operating temperature	°C	T_{case}	10		50	
Input connector						1.85 mm
Output connectors						1.85 mm
Weight	g			17.5		
Dimensions					42.6	Width
	mm				30.3	Length
					9	Height

 $^{^{\}rm 2}$ These specifications are valid for the VFVFVF configuration.

The amplitude balance is defined as the amplitude difference in dB of the output signals at port 2 and 3. It is calculated as: $|S_{31}|_{dB}$

⁻ $/S_{21}/_{dB}$.

The phase balance is defined as the phase difference in degrees of the output signals at port 2 and 3. It is calculated as: $\vartheta_{31} - \vartheta_{21}$, where ϑ_{31} and ϑ_{21} indicate the unwrapped phase of S_{31} and S_{21} , respectively.

Typical S-Parameters and Balance Properties

Mechanical Drawing

All dimensions in mm

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23 D | 12277 Berlin | Germany

+49 30 772 051 0

sales@shf-communication.com

www.shf-communication.com