
SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany Phone ++49 30 / 772 05 10 • Fax ++49 30 / 753 10 78

E-Mail: sales@shf-communication.com • Web: http://www.shf-communication.com

Datasheet SHF 442A DIV

>25GHz 1:2 Frequency Divider Module

The SHF 442A DIV is a frequency divider capable of broadband operation from 500 MHz to 25 GHz using a sinusoidal input signal. A frequency of half the input frequency is produced. Driving the frequency divider with a steep edge input signal the lower frequency can be extended to the theoretical limit of DC. It offers high sensitivity and high quality output signals together with a compact size and ease of operation.

Features

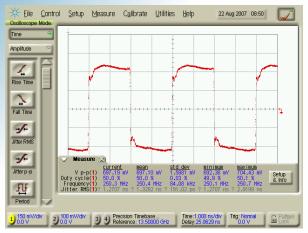
- Broadband operation up to over 25 GHz
- High Input sensitivity
- Low power consumption
- Single-ended operation

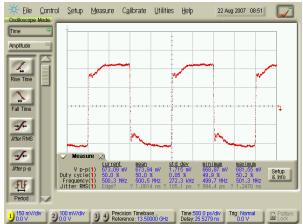
Applications

- SONET OC-768 and SDH STM-256
- Broadband test and measurement equipment

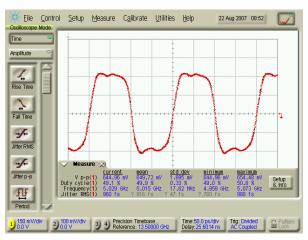
Specifications

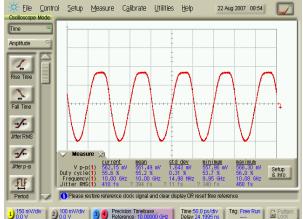
Parameter	Symbol	Unit	Min	Тур	Max	Conditions
Performance						
Input frequency	f _{in}	GHz	0.5		25	sinusoidal input signal
Output frequency	f _{out}	GHz	0.25		12.5	sinusoidal output signal
Single ended output swing		mVpp	500		700	into 50 Ω load
Output return loss	S ₂₂	dB		10		<12,5 Ghz
Input return loss	S ₁₁	dB		10		
Maximum ratings						
Input Power Level	P _{in}				4	
Operating conditions						
Power supply	V _{cc}	V	5		7	
Supply current	I(V _{cc})	mA		75		
Power consumption	T _d	W		375		@ V _{cc} = +5V
Operating temperature	T _{op}	°C	10		50	
Dimensions		mm				50x35x22 plus connectors


Input connector: K (2.9 mm), AC coupled Output connectors: K (2.9 mm), DC coupled

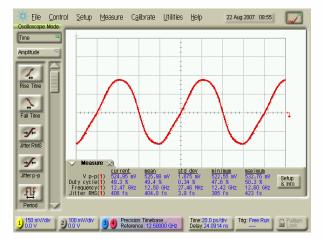


Output Waveforms


Typical output waveforms measured using Agilent DCA 86100B, sampling module 86118A [70 GHz], precision timebase module 86107A (20, 40, 50 GHz), 0.5 m microwave cable assembly, 10 dB attenuator



Input Frequency = 500 MHz


Input Frequency = 1 Ghz

Input Frequency = 10 GHz

Input Frequency = 20 GHz

Input Frequency = 25 GHz

Input Sensitivity

The following figure 1 shows the typical minimum input power level if the frequency divider is driven from a sinusoidal signal.

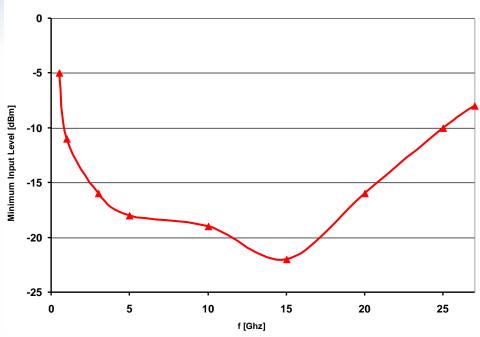
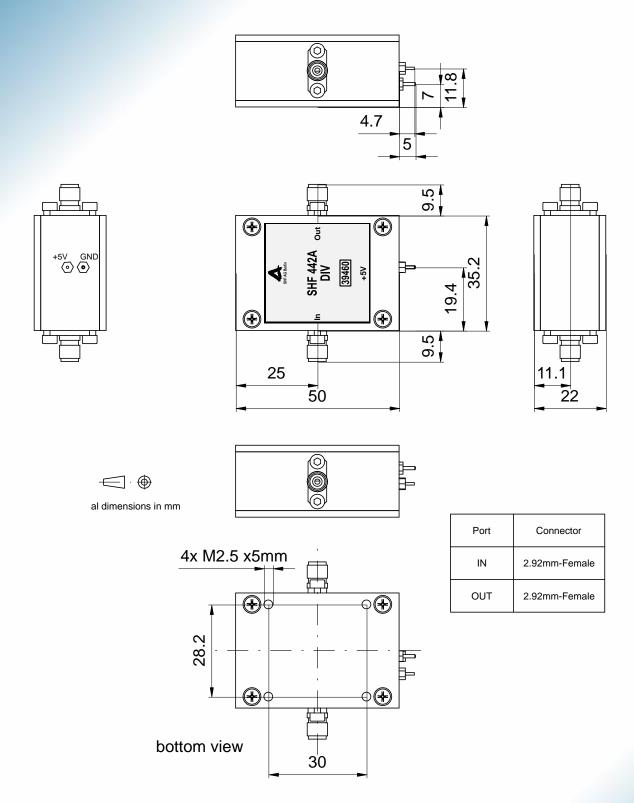



Fig.1: Typical Input Sensitivity

Module Outline

